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Practice 8. Design of a BPSK modulator with VHDL 

8.1. Objectives 

To design a binary phase shift keying modulator (BPSK) by using VHDL and its 
implementation in a FPGA. To learn to establish communications with 
peripherals, in this case the DAC LTC 2624. 

8.2. Digital-to-analog converter LTC 2624 

The Spartan-3A/3AN Starter Kit Board has a serial digital-to-analog converter 
(DAC) of four channels and SPI-compatible (Serial Peripheral Interface). The four 
outputs from the DAC are accessible from the connector J21, which is located, 
together with the DAC, immediately below the Ethernet RJ-45 connector of the 
board, such as we can see in the figure. 

 

Figure 8.1. Location of the DAC LTC 2624 and the connector J21 in the development board 

The SPI is a synchronous full-duplex character-oriented bus which only employs 
five communication wires. In the figure is shown the connection of the FPGA 
with the SPI bus interface and that of the latter with the DAC. 

 

Figure 8.2. Connections schematics of the digital-to-analog converter 
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The next table lists the interface signals between the FPGA and the DAC, where 
the FPGA is the master of the communication and the DAC the slave. The 
SPI_MOSI, SPI_SCK and DAC_OUT signals are shared with other devices on 
the SPI bus, therefore the active-low DAC_CS signal is used for selecting the 
DAC as slave of the communication. The DAC_CLR signal is the active-low 
reset input to the DAC. 

 

Table 8.1. DAC interface signals 

The next figure shows a detailed example of the SPI bus timing. Each bit is 
transmitted or received relative to the SPI_SCK clock signal. After driving the 
DAC_CS slave select signal Low, the FPGA transmits data on the SPI_MOSI 
signal, MSB first. The LTC2624 captures input data (SPI_MOSI) on the rising 
edge of SPI_SCK; the data must be valid for at least 4 ns relative to the rising 
clock edge. The LTC2624 DAC transmits its data on the DAC_OUT signal on 
the falling edge of SPI_SCK. The FPGA captures this data on the next rising 
SPI_SCK edge. The FPGA must read the first DAC_OUT value on the first 
rising SPI_SCK edge after DAC_CS goes Low. Otherwise, bit 31 is missed. After 
transmitting all 32 data bits, the FPGA completes the SPI bus transaction by 
returning the DAC_CS slave select signal High. The High-going edge starts the 
actual digital-to-analog conversion process within the DAC. 

 

Figure 8.3. SPI communication waveforms 

Figure 8.4 shows the communications protocol required to interface with the 
LTC2624 DAC. Inside the DAC, the SPI interface is formed by a 32-bit shift 
register. Each 32-bit command word consists of a command and an address, 
followed by a data value. As a new command enters the DAC, the previous  
32-bit command word is echoed back to the master. The response from the DAC 
can be ignored although it is useful to confirm correct communication. 

The FPGA first sends eight dummy or don‟t care bits, followed by a four-bit 
command. The most commonly used command with the board is c3c2c1c0 = 
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“0011”, which immediately updates the selected DAC output with the specified 
data value. Following the command, the FPGA selects one or all the DAC 
output channels via a four-bit address field. Following the address field, the 
FPGA sends a 12-bit unsigned data value that the DAC converts to an analog 
value on the selected output(s). Finally, four additional dummy or don‟t care 
bits pad the 32-bit command word. 

As shown in Figure 8.2, each DAC output level is the analog equivalent of a  
12-bit unsigned digital value, DATA[11:0], written by the FPGA to the DAC via 
the SPI interface. The voltage on a specific output is generally described by the 
next equation: 

REFOUT V
DATA

V
096,4

]0:11[
  

The reference voltage, VREF, is different between the four DAC outputs. 
Channels A and B use a 3.3V reference voltage. Channels C and D have a 
separate reference voltage, nominally also 3.3V, supplied by the LP3906 
regulator designated as IC18. 

According to the previous equation, the DAC only works with positive values 
(unsigned integers), feature that we will take into account when we send to the 
DAC the digital word whose value has to be represented. 

 

Figure 8.4. SPI communication protocol to DAC LTC2624 

 

8.3. Practical development 

In this practice, we are going to design, by using VHDL, a BPSK modulator 
which is constituted by a random data generator, the BPSK modulator itself and 
a DAC interface device (see figure 8.5). As we can see in the figure, the data 
generator has two inputs (clk and reset) and two outputs (data and sync), 
whereas the BPSK modulator has three inputs (clk, reset and serial_data) and 
three outputs (clk_data, clk_spi and data). Moreover, the output clk_data is fed 
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back to the clock input of the data generator, whereas the output of the latter is 
connected to the serial data input of the BPSK modulator. 

 

Figure 8.5. Block diagram of the BPSK system 

Given that the output of the BPSK modulator has to be analog, a DAC interface 
is included to establish the communication with this device by means of the SPI 
bus. The BPSK modulator supplies the clock reference signal for the SPI bus, as 
well as the digital data word which must be converted to analog by the DAC. 
Therefore, the BPSK modulator is in charge of controlling the synchronism of 
all the system components, generating the clock signals for the SPI bus, as well 
as those for the data generator and the modulator itself. 

8.3.1. DAC interface 

The device which works as DAC interface has three inputs (reset, clk and data) 
and four outputs corresponding to the communication wires of the SPI bus 
(spi_mosi, spi_sck, dac_cs, dac_clr). Next we are going to design this interface with 
the DAC, which will allow us to represent an analog signal through channel 
DAC A. 

1. Design a VHDL code for the connection interface to the DAC through 
the SPI bus. A possible example for this code would be the next one: 
 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity com_dac is 

    Port ( clk : in  STD_LOGIC; 

           reset : in  STD_LOGIC; 

           dac_cs : out  STD_LOGIC; 

  dac_clr : out STD_LOGIC; 

           spi_mosi : out  STD_LOGIC; 

           spi_sck : out  STD_LOGIC; 

           data : in  STD_LOGIC_VECTOR(11 downto 0); 

  count_out : out std_logic_vector(6 downto 0)); 

end com_dac; 

 

architecture Behavioral of com_dac is 

signal memory_dac : std_logic_vector(31 downto 0) := (others => '0'); 

begin 

process(clk,reset) 
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variable count : natural range 0 to 100 := 0; 

begin 

 if reset = '1' then 

  -- Sets the command by default 

  memory_dac(23 downto 20) <= "0011";  

  -- The address points out to DAC A by default 

  memory_dac(19 downto 16) <= "0000";  

  count := 0; 

  dac_cs <= '1'; 

 elsif clk'event and clk = '1' then 

  count := count + 1; 

  case count is 

  when 1 =>  dac_cs <= '0'; 

     memory_dac(15 downto 4) <= data; -- Load the data 

     -- Points out to DAC A 

     memory_dac(19 downto 16) <= "0000";  

     spi_mosi <= memory_dac(31); 

  when 33 => dac_cs <= '1'; 

  when 64 => count := 0; 

  when others =>  

     spi_mosi <= memory_dac(31-((count-1) mod 32)); 

  end case; 

 end if; 

 count_out <= std_logic_vector(conv_unsigned(count,7)); 

end process; 

spi_sck <= not(clk); 

dac_clr <= not(reset); 

end Behavioral; 

 

Observe as the controller of the DAC interface is basically constituted by 
a state machine based on the variable count. Every time that there is a 
rising edge of the signal clk, this variable is increased and several 
conditions are checked. If count is equal to one, the data are loaded to the 
memory of the interface (memory_dac) and the latter is prepared for the 
transmission of the data towards channel DAC A through the SPI bus. 
Once the 32 data bits are transmitted, the signal dac_cs is set to high logic 
level in order to indicate to the DAC that initiates the conversion, re-
initiating all the process again. This process is repeated endlessly, unless 
this is interrupted by a reset signal, which would initialize the interface. 
We can see as the spi_sck and dac_clr signals are obtained by simply 
inverting the clk and reset signals, respectively.    
 

2. Now, we are going to carry out a simulation by using the ISE Simulator 
in order to check the correct behaviour of the interface with the DAC. 
Observe as a signal of type std_logic_vector called count_out has been 
included with the unique mission of making easier the analysis of the 
different signals of the device. 

3. Prove in the board the correct behaviour of the DAC interface, using as 
data inputs the switchers SW0 to SW3 of the development board (they 
are used to represent the most significant bits). For the reset signal, use 
any push button and, for the clk input, make use of the on-board clock 
oscillator. A possible configuration file could be the following: 
 

NET "reset" CLOCK_DEDICATED_ROUTE = FALSE; 

NET "data<11>" LOC = T9; 

NET "data<10>" LOC = U8; 
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NET "data<9>" LOC = U10; 

NET "data<8>" LOC = V8; 

NET "clk" LOC = E12; 

NET "reset" LOC = T15; 

NET "spi_mosi" LOC = AB14; 

NET "spi_sck" LOC = AA20; 

NET "dac_cs" LOC = W7; 

NET "dac_clr" LOC = AB13; 

 

8.3.2. Data generator 

For the design of the pseudo-random data generator we can use that 
implemented in the previous practice.  This data generator requires from the 
definition of several constants and a component which works as register. Next 
we show the VHDL codes which are necessary in both cases. 

1. Create a package called constants which contains all the constants that we 
are going to use during this practice. The VHDL code would be the next 
one: 
 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

use IEEE.STD_LOGIC_ARITH.all; 

use IEEE.MATH_REAL.all; 

 

package constants is 

 constant N : positive := 4; 

 constant M : positive := 32; 

 constant nbits : positive := 12; 

 constant ndec : positive := 10; 

 subtype word is signed(nbits-1 downto 0); 

 type table is array (M-1 downto 0) of word; 

 constant Pi : real := 3.1415927; 

 constant delta_phi : real := 2.0*Pi/real(M);  

 function and_vector (vector : in std_logic_vector(0 to N-1)) 

return std_logic; 

end constants; 

 

package body constants is 

 function and_vector (vector : in std_logic_vector(0 to N-1))  

  return std_logic is 

 variable result : std_logic; 

 begin 

  result := vector(0); 

  for I in 1 to N-1 loop 

   result := vector(I) and result; 

  end loop; 

  return result;  

 end and_vector; 

end constants; 

 

 Observe as, apart from the constant N which is referred to the length 
(number of registers) of the data generator and the and_vector function 
which determines the and-logic function of a data vector, are also defined 
a constant M for the number of positions of a table which is going to 
contain the sine wave values (see section 8.3.3), the number of bits (nbits)  
of each word of the table, as well as the number of bits used as decimals 
(ndec), and two real constants (Pi and delta_phi). The two last ones are 
used by a function which initializes the table and they are referred to the 
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irrational number  and the phase increment  between consecutive 

positions in the table which is given by 2/M. In the section 8.3.3 we will 
address these aspects in more detail. The library MATH_REAL of IEEE is 
included to work with real numbers. 

 
2. Create a device which works as register to be used by the data generator. 

A possible VHDL code would be the next one: 
 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity register is 

    Port ( clk,preset,D : in  STD_LOGIC; 

           Q : out  STD_LOGIC); 

end register; 

 

architecture Behavioral of register is 

 

begin 

 process(clk,preset) 

 begin 

  if preset='1' then 

   Q <= '1'; 

  elsif clk'event and clk='1' then 

   Q <= D; 

  end if; 

 end process; 

end Behavioral; 

 

Observe as the register responds to the changes in the input signal clk 
(clock signal) and preset (active-high signal which forces a set putting the 
register to logic level „1‟). Whenever a rising edge occurs in the clock 
signal clk, the data at the D input of the register will be transferred to its 
output Q. 

3. In figure 8.6 is shown the internal structure of the data generator which 
is constituted by four register, therefore generating a pseudo-random 
sequence of length 24 – 1 = 15. 

 

 

Figure 8.6. Internal structure of the pseudo-random data generator 

 

A possible VHDL code which allows us to implement the pseudo-
random data generator of figure 8.6 is the next one: 
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library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

use work.constants.ALL; 

 

entity data_gen is 

 generic (Nreg : positive := N); 

 port (clk,reset : in  STD_LOGIC; 

   data,sync : out  STD_LOGIC); 

end data_gen; 

 

 

architecture Behavioral of data_gen is 

 

component register is 

 port (clk,preset,D : in std_logic; 

   Q : out std_logic); 

end component register; 

signal sig_xor : std_logic; 

signal Q_int : std_logic_vector(0 to Nreg-1); 

begin 

 Data_generator: for I in 0 to Nreg-1 generate 

    Reg00: if (I=0) generate 

  Reg0: Register port map (clk,reset,sig_xor,Q_int(0)); 

    end generate; 

    Regs: if I>0 generate 

  Reg: Register port map (clk,reset,Q_int(I-1),Q_int(I)); 

    end generate; 

 end generate; 

 data <= Q_int(Nreg-1); 

 sig_xor <= Q_int(0) xor Q_int(Nreg-1); 

 sync <= and_vector(Q_int); 

end Behavioral; 

 
8.3.3. BPSK modulator 

In this section we are going to proceed to design the BPSK modulator. First of 
all, we have to take into account that, considering the way in which the DAC 
interface has been defined, this device requires from 64 clock cycles in order to 
carry out the transmission of the digital data to be represented by the DAC in 
an analog way. Therefore, the clock to be used by this device will be the fastest 
one, that is, the on-board 50 MHz clock oscillator. During these 64 clock cycles, 
the data supplied by the DAC is not allowed to change, therefore the modulator 
clock which controls the addressing to the sine wave table has to oscillate at a 
frequency 64 times slower than that of the basis clock. Moreover, the data 
supplied by the generator, which modulates the sine wave, must be maintained 
unalterable during at least a complete cycle of the sine wave, which is 
constituted by M samples, hence the data clock has to oscillate at a frequency M 
times slower than that of the table addressing.  Taking into account everything 
that has previously been mentioned, it is possible to define the rhythm of the 
different clock signals generated by the BPSK modulator, but it is also necessary 
to create the table which contains the values of the different samples of the sine 
wave. Thus, we are going to create a package, which we are going to name 
real2bit, where all the functions necessary to generate the table are defined. 
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1. Add the package real2bit to the system design: 
 
library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.MATH_REAL.ALL; 

use work.constants.all; 

 

package real2bit is 

 subtype double is signed(2*nbits-1 downto 0); 

 function truncate (a: real; numdec : natural := ndec) return 

signed; 

 function extract (a: double; numdec : natural := ndec) return 

signed; 

 function initialize_table return table; 

 constant table_wave : table := initialize_table; 

end real2bit; 

 

 

package body real2bit is 

 

 function truncate (a: real; numdec : natural := ndec)  

 return signed is 

  variable result: signed(nbits-1 downto 0); 

  variable tmp, comp : real := 0.0; 

  variable comp_int, sign : integer := 0; 

 begin 

  -- numdec indicates the number of bits referred to decimals 

  tmp := abs(a*(2.0**numdec)); 

  if a < 0.0 then 

   sign:= -1; 

  else 

   sign:= 1; 

  end if; 

  for I in nbits-2 downto 0 loop 

   comp := comp + 2.0**I; 

   comp_int := comp_int + 2**I; 

   if tmp < comp then 

    comp := comp - 2.0**I; 

    comp_int := comp_int - 2**I; 

   end if; 

  end loop; 

  result := conv_signed(comp_int*sign,nbits); 

  return result; 

 end truncate; 

  

 function extract (a: double; numdec : natural := ndec) return  

 signed is 

  variable result : signed(nbits-1 downto 0); 

 begin 

  result := signed(a(numdec+nbits-1 downto numdec)); 

   return result; 

  end function extract; 

 

 function initialize_table return table is 

 variable result : table; 

 begin 

  for I in 0 to M-1 loop 

   result (I) := truncate(2.0*sin(delta_phi*real(I))); 

  end loop; 

  return result; 

 end function initialize_table; 

end real2bit; 

 



 

PRÁCTICE 8: 

DESIGN OF A BPSK MODULATOR 

WITH VHDL 

 

 

10/13 

MSc in Electronic Technologies 

and Communications 

DIGITAL COMMUNICATIONS SYSTEMS 

 

In this package, two functions has been defined which allow us to work with 
real numbers, truncate and extract to be precise, as well as a function to initialize 
the table with the different samples of the sine wave. The function truncate 
allows us to convert a real number to a binary number of nbits bits in two‟s 
complement notation (type signed), where the least significant bits are referred 
to the decimal part of the represented number. For example, if we pass to the 
function truncate the value 1.5, according to the definitions in the package 
constants for nbits = 12 and ndec = 7 (value by default for numdec if we do not 
pass any value as second argument of the function), this function returns 
“00001.1000000” (the decimal point has been included for a better 
understanding of the result). On the contrary, truncate(-1.5) returns 
“11110.1000000”. 

The function extract allows us to obtain a new result of type word (defined in the 
package constants) from a value of type double, result that is obtained by 
multiplying two values of type word. This function is not going to be used in 
this practice but it is useful when we multiply two values of type word and we 
are interested in recovering the result keeping the same format as that of the 
operands. As it is known, when a binary data word of nbits bits is multiplied by 
other nbits-binary word too, the result will be of 2nbits bits, with a shift of the 
decimal point to the bit position 2ndec. The function extract only recovers the 
central part of the result obtained after a multiplication, in order to obtain a 
value of type word again. 

Finally, we have defined a function called initialize_table, which saves the 
sample values of the sine wave in an array of integers with sign (signed) along M 
consecutive positions. This array is defined as the type table in the package 
constants. The resulting table, named table_wave, is a constant which can be 
indexed in order to extract its values along the time. 

2. Taking into account the previously mentioned, we are going to proceed 
to design the BPSK modulator. A possible VHDL code would be the next 
one: 
 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use work.constants.all; 

use work.real2bit.all; 

 

entity bpsk is 

    Port ( clk : in  STD_LOGIC; 

           reset : in  STD_LOGIC; 

           serial_data : in  STD_LOGIC; 

           clk_data : out  STD_LOGIC; 

           clk_spi : out  STD_LOGIC; 

  clk_bpsk : out STD_LOGIC; 

           data : out  STD_LOGIC_VECTOR (11 downto 0)); 

end bpsk; 

 

architecture Behavioral of bpsk is 

signal pointer : natural range 0 to (M-1) := M-1; 
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signal value : word := (others => '0'); 

signal clk_bpsk : std_logic := '0'; 

begin 

process(reset,clk,clk_bpsk) 

variable count : natural range 0 to (64*M-1) := 0; 

begin 

 if reset = '1' then 

  clk_bpsk <= '0'; 

  clk_data <= '0'; 

  count := 0; 

 elsif clk'event and clk = '1' then 

  if count = 0 then 

   clk_bpsk <= '1'; 

   clk_data <= '1'; 

  elsif count mod 64 = 0 then 

   clk_bpsk <= '1'; 

  else 

   clk_bpsk <= '0'; 

   clk_data <= '0'; 

  end if; 

  count := (count + 1) mod (64*M); 

 end if; 

end process; 

process(reset,clk_bpsk) 

begin 

 if reset = '1' then 

  pointer <= M-1; 

 elsif clk_bpsk'event and clk_bpsk = '1' then 

  pointer <= (pointer + 1) mod M; 

 end if; 

end process; 

clk_spi <= clk; 

value <= -table_wave(pointer) when serial_data = '1' else 

table_wave(pointer); 

-- Use the next line for simulation 

data <= std_logic_vector(value); 

-- Use the next line for synthesis and comment the previous one 

--data <= value + conv_signed(2**(nbits-1),nbits); 

clk_bpsk <= clk_bpsk; 

end Behavioral; 

 

Observe as there exists a first process which generates the clock signals 
(clk_data, clk_bpsk) according to the previously mentioned considerations. 
Moreover, the clock signal for the DAC interface, clk_spi, is directly the 
input signal clk, which coincides with the output of the on-board 50 MHz 
clock oscillator. 
A second process modifies the value of a pointer, which indexes the table 
that contains the samples of the sine wave, table_wave, at each rising edge 
of the signal clk_bpsk. Given that the samples are sequentially positioned 
in the table, at each leap of the pointer a new sample will be represented 
along the time, hence, after M jumps, the representation of the sine wave 
will be completed. 
Finally, we have several code lines dedicated to the transmission of the 
digital word to be represented by the DAC. In first place, we have 
created an internal signal called value to which is assigned the table value 
if the data digit supplied by the data generator (serial_data) is „0‟ or this 
same value but negated if the data digit is „1‟. This is basically a BPSK 
modulation. After that, this value is sent to the data output of the 
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modulator through the port data. We have included two code lines, both 
excluding each other, one of them for simulation, where the data value is 
directly sent, and another one for the synthesis where a certain quantity 
is added so as to make the value sent to the DAC interface positive. Take 
into account that the DAC only works with unsigned integers (type 
unsigned). What has been done is to add a constant value which 
corresponds to the half of the output range of the DAC (VREF/2). Thus, 
the wave at the output is represented centred round this value. 
  

3. By using the ISE Simulator, check the correct behaviour of the BPSK 
modulator. Observe as we have included a signal clk_bpsk as output wire 
of the block (by assigning to it the value clk_bpsk), which has been done 
only to ease the analysis of the device, since this signal actually only 
works internally inside the block. 

4. Next it is shown a possible VHDL code which integrates all the blocks 
previously designed: 
 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

use work.constants.all; 

 

entity system is 

    Port ( clk : in  STD_LOGIC; 

           reset : in  STD_LOGIC; 

           dac_cs : out  STD_LOGIC; 

           spi_mosi : out  STD_LOGIC; 

           spi_sck : out  STD_LOGIC; 

  dac_clr : out STD_LOGIC; 

           data : out  STD_LOGIC); 

end system; 

 

architecture Behavioral of system is 

component bpsk is 

    Port ( clk : in  STD_LOGIC; 

           reset : in  STD_LOGIC; 

           serial_data : in  STD_LOGIC; 

           clk_data : out  STD_LOGIC; 

           clk_spi : out  STD_LOGIC; 

  clk_bpsk : out STD_LOGIC; 

           data : out  STD_LOGIC_VECTOR (11 downto 0)); 

end component bpsk; 

component data_gen is 

 generic (Nreg : positive := N); 

 port (clk,reset : in  STD_LOGIC; 

    data,sync : out  STD_LOGIC); 

end component data_gen; 

component com_dac is 

    Port ( clk : in  STD_LOGIC; 

           reset : in  STD_LOGIC; 

           dac_cs : out  STD_LOGIC; 

  dac_clr : out STD_LOGIC; 

           spi_mosi : out  STD_LOGIC; 

           spi_sck : out  STD_LOGIC; 

           data : in  STD_LOGIC_VECTOR(11 downto 0); 

  count_out : out std_logic_vector(6 downto 0)); 

end component com_dac; 

signal clk_data, clk_spi, serial_data : std_logic; 
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signal data_int : std_logic_vector (11 downto 0); 

begin 

 Data_gen0: data_gen port map (clk_data,reset,serial_data); 

 Modulador: bpsk port map  

  (clk,reset,serial_data,clk_data,clk_spi, 

   data => data_int); 

 DAC_interface: com_dac port map 

  (clk_spi,reset,dac_cs,dac_clr,spi_mosi,spi_sck,data_int); 

 data <= serial_data; 

end Behavioral; 

 

Observe as there are several signals such as clk_bpsk, sync and count_out 
which are not used by the block system, since they are only added in 
order to ease the analysis of the different devices. 

5. Implement into the FPGA the design of the BPSK modulator. Observe 
the output signals by using a scope/logic analyzer. Next it is shown a 
possible configuration for the I/O pins in the FPGA: 
 
NET "reset" CLOCK_DEDICATED_ROUTE = FALSE; 

NET "dac_clr" LOC = AB13; 

NET "dac_cs" LOC = W7; 

NET "data" LOC = A13; 

NET "clk" LOC = E12; 

NET "reset" LOC = T15; 

NET "spi_mosi" LOC = AB14; 

NET "spi_sck" LOC = AA20; 

 

 

 

 

 

 


